Ved hjelp av MATLAB, hvordan kan jeg finne tre-dagers glidende gjennomsnitt av en bestemt kolonne av en matrise og legge til glidende gjennomsnitt i den matrisen jeg prøver å beregne tre-dagers glidende gjennomsnitt fra bunnen til toppen av matrisen. Jeg har oppgitt koden min: Gitt følgende matrise a og maske: Jeg har prøvd å implementere conv kommandoen, men jeg mottar en feil. Her er conv kommandoen jeg har prøvd å bruke på 2. kolonne av matrise a: Utgangen jeg ønsker er gitt i følgende matrise: Hvis du har noen forslag, vil jeg sette stor pris på det. Takk for kolonne 2 i matrisen a, beregner jeg 3-dagers glidende gjennomsnitt som følger og plasserer resultatet i kolonne 4 i matrise a (jeg omdøpt matrise a som 39desiredOutput39 bare for illustrasjon). 3-dagers gjennomsnittet av 17, 14, 11 er 14 det 3-dagers gjennomsnittet på 14, 11, 8 er 11 3-dagers gjennomsnittet av 11, 8, 5 er 8 og 3-dagers gjennomsnittet på 8, 5, 2 er 5. Det er ingen verdi i de nederste 2 radene for fjerde kolonne fordi beregningen for 3-dagers glidende gjennomsnitt begynner nederst. Den 39 ugyldige 39-utgangen vil ikke bli vist før minst 17, 14 og 11. Forhåpentligvis er dette fornuftig ndash Aaron 12. juni kl 13:28 Generelt vil det hjelpe hvis du vil vise feilen. I dette tilfellet gjør du to ting feil: Først må fellingen din deles med tre (eller lengden på det bevegelige gjennomsnittet). For det andre, merk størrelsen på c. Du kan ikke bare passe inn i en. Den typiske måten å få et bevegelige gjennomsnitt på, ville være å bruke samme: men det ser ikke ut som du vil. I stedet er du tvunget til å bruke et par linjer: Jeg har en vektor og jeg vil beregne det bevegelige gjennomsnittet av det (ved hjelp av et vindu med bredde 5). For eksempel, hvis vektoren er 1,2,3,4,5,6,7,8. da skal den første oppføringen av den resulterende vektoren være summen av alle oppføringene i 1,2,3,4,5 (dvs. 15) den andre oppføringen av den resulterende vektoren skal være summen av alle oppføringene i 2,3,4, 5,6 (dvs. 20) osv. Til slutt skal den resulterende vektoren være 15,20,25,30. Hvordan kan jeg gjøre det The conv-funksjonen er rett opp i smuget ditt: Tre svar, tre forskjellige metoder. Her er en rask referanse (forskjellige inngangsstørrelser, fast vindubredde på 5) ved hjelp av timeit, må du kaste hull i den (i kommentarene) hvis du tror det må raffineres. conv framstår som den raskeste tilnærmingen sin omtrent dobbelt så fort som myntene nærmer seg (ved hjelp av filter). og omtrent fire ganger så fort som Luis Mendos tilnærming (ved hjelp av cumsum). Her er en annen referanse (fast inngangsstørrelse på 1e4. Forskjellige vindubredder). Her kommer Luis Mendos cumsum tilnærming fram som den klare vinneren, fordi dens kompleksitet primært styres av lengden på inngangen og er ufølsom for vinduets bredde. Konklusjon For å oppsummere, bør du bruke conv-tilgangen hvis vinduet ditt er relativt lite, bruk cumsum-tilnærmingen hvis vinduet ditt er relativt stort. Kode (for referanser) Når du beregner et løpende glidende gjennomsnitt, er gjennomsnittet i mellomtiden fornuftig. I det forrige eksempelet beregnet vi gjennomsnittet av de første 3 tidsperiodene og plasserte det ved siden av periode 3. Vi kunne ha plassert gjennomsnittet midt i tidsintervallet på tre perioder, det vil si ved siden av periode 2. Dette fungerer bra med ulike tidsperioder, men ikke så bra for jevne tidsperioder. Så hvor skulle vi plassere det første glidende gjennomsnittet når M 4 Teknisk sett ville det bevegelige gjennomsnittet falle på t 2,5, 3,5. For å unngå dette problemet, slipper vi MAs ved hjelp av M 2. Dermed glatter vi de jevne verdiene. Hvis vi gjennomsnittlig et jevnt antall termer, må vi glatte de jevne verdiene. Følgende tabell viser resultatene ved å bruke M 4.Virkende gjennomsnitt Gjennomsnittlig gjennomsnitt Med konvensjonelle datasett er gjennomsnittsverdien ofte den første, og en av de mest nyttige, oppsummerte statistikkene for å beregne. Når data er i form av en tidsserie, er seriemengden et nyttig mål, men reflekterer ikke dataens dynamiske natur. Gjennomsnittlige verdier som beregnes over kortere perioder, enten før den nåværende perioden eller sentrert i den nåværende perioden, er ofte mer nyttige. Fordi slike middelverdier vil variere, eller flytte, som den nåværende perioden beveger seg fra tid t 2, t 3. etc. er de kjent som bevegelige gjennomsnitt (Mas). Et enkelt glidende gjennomsnitt er (typisk) det uveide gjennomsnittet av k tidligere verdier. Et eksponentielt vektet glidende gjennomsnitt er i det vesentlige det samme som et enkelt bevegelige gjennomsnitt, men med bidrag til middelvektet av deres nærhet til den nåværende tid. Fordi det ikke er en, men en hel rekke bevegelige gjennomsnittsverdier for en gitt serie, kan settet Mas selv bli plottet på grafer, analysert som en serie, og brukes til modellering og prognoser. En rekke modeller kan bygges ved hjelp av bevegelige gjennomsnitt, og disse er kjent som MA-modeller. Hvis slike modeller er kombinert med autoregressive (AR) modeller, er de resulterende komposittmodellene kjent som ARMA - eller ARIMA-modeller (jeg er for integrert). Enkle bevegelige gjennomsnitt Siden en tidsserie kan betraktes som et sett med verdier, kan t 1,2,3,4, n gjennomsnittet av disse verdiene beregnes. Hvis vi antar at n er ganske stor, og vi velger et heltall k som er mye mindre enn n. vi kan beregne et sett med blokk gjennomsnitt eller enkle bevegelige gjennomsnitt (av rekkefølge k): Hvert mål representerer gjennomsnittet av dataverdiene over et intervall av k observasjoner. Merk at den første mulige MA for ordre k gt0 er den for t k. Mer generelt kan vi slippe det ekstra abonnementet i uttrykkene ovenfor og skrive: Dette sier at estimert gjennomsnitt på tidspunktet t er det enkle gjennomsnittet av den observerte verdien ved tid t og de foregående k -1-trinnene. Hvis det legges vekt på som reduserer bidraget til observasjoner som er lengre bort i tiden, sies det glidende gjennomsnittet å være eksponensielt jevnt. Flytende gjennomsnitt blir ofte brukt som en form for prognoser, hvorved estimert verdi for en serie på tiden t 1, S t1. er tatt som MA for perioden til og med tiden t. f. eks dagens estimat er basert på et gjennomsnitt av tidligere registrerte verdier fram til og med gårdager (for daglige data). Enkle bevegelige gjennomsnitt kan ses som en form for utjevning. I eksemplet som er vist nedenfor, er luftforurensningsdatasettet vist i introduksjonen til dette emnet blitt utvidet med en 7-dagers glidende gjennomsnittlig (MA) - linje, vist her i rødt. Som det ser ut, jevner MA-linjen ut toppene og troughene i dataene og kan være svært nyttig når det gjelder å identifisere trender. Standard forward-beregning formel betyr at de første k -1 datapunktene ikke har noen MA-verdi, men deretter utvider beregningene til det endelige datapunktet i serien. PM10 daglige gjennomsnittsverdier, Greenwich kilde: London Air Quality Network, londonair. org. uk En grunn til å beregne enkle bevegelige gjennomsnitt på måten som er beskrevet er at det gjør det mulig å beregne verdier for alle tidsluker fra tid tk frem til i dag, og Som en ny måling er oppnådd for tid t 1, kan MA for tid t 1 legges til settet som allerede er beregnet. Dette gir en enkel prosedyre for dynamiske datasett. Det er imidlertid noen problemer med denne tilnærmingen. Det er rimelig å argumentere for at gjennomsnittsverdien i løpet av de siste 3 periodene skal være plassert ved tidspunktet t -1, ikke tiden t. og for en MA over et jevnt antall perioder, bør det kanskje ligge midt mellom to tidsintervaller. En løsning på dette problemet er å bruke sentrale MA beregninger, der MA på tidspunktet t er gjennomsnittet av et symmetrisk sett med verdier rundt t. Til tross for det åpenbare meritter, er denne tilnærmingen ikke vanligvis brukt fordi det krever at data er tilgjengelig for fremtidige hendelser, noe som kanskje ikke er tilfelle. I tilfeller der analysen er helt av en eksisterende serie, kan bruk av sentrert Mas være å foretrekke. Enkle bevegelige gjennomsnitt kan betraktes som en form for utjevning, fjerne noen høyfrekvente komponenter i en tidsserie og markere (men ikke fjerne) trender på samme måte som det generelle begrepet digital filtrering. Faktisk er glidende gjennomsnitt en form for lineært filter. Det er mulig å bruke en bevegelig gjennomsnittsberegning til en serie som allerede har blitt utjevnet, dvs. utjevning eller filtrering av en allerede glatt serie. For eksempel, med et bevegelige gjennomsnitt på rekkefølge 2, kan vi betrakte det som beregnet ved hjelp av vekter, så MA ved x 2 0,5 x 1 0,5 x 2. På samme måte MA på x 3 0,5 x 2 0,5 x 3. Hvis vi bruk et andre nivå av utjevning eller filtrering, vi har 0,5 x 2 0,5 x 3 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dvs. 2-trinns filtrering prosess (eller convolution) har produsert et variabelt vektet symmetrisk glidende gjennomsnitt, med vekter. Flere konvolutter kan produsere ganske komplekse vektede glidende gjennomsnitt, hvorav noen har blitt funnet å være særlig bruk i spesialiserte felt, som for eksempel i livsforsikringsberegninger. Flytte gjennomsnitt kan brukes til å fjerne periodiske effekter dersom det beregnes med periodikkets lengde som kjent. For eksempel, med månedlige data kan sesongvariasjoner ofte fjernes (hvis dette er målet) ved å bruke et symmetrisk 12-måneders glidende gjennomsnitt med alle månedene vektet like, bortsett fra det første og det siste som veies med 12. Dette skyldes at det vil være 13 måneder i den symmetriske modellen (nåværende tid, t. - 6 måneder). Summen er delt med 12. Lignende prosedyrer kan vedtas for en veldefinert periodicitet. Eksponentielt vektede glidende gjennomsnitt (EWMA) Med den enkle glidende gjennomsnittsformelen: Alle observasjoner er likevektede. Hvis vi kalte disse likevektene, alfa t. hver av k-vekter vil være lik 1 k. så summen av vektene ville være 1, og formelen ville være: Vi har allerede sett at flere applikasjoner av denne prosessen resulterer i at vektene varierer. Med eksponentielt vektede glidende gjennomsnitt blir bidraget til middelverdien fra observasjoner som er fjernet i tid, redusert, og derved legges vekt på nyere (lokale) hendelser. I hovedsak er en utjevningsparameter, 0lt al1l, introdusert, og formelen er revidert til: En symmetrisk versjon av denne formelen vil være av formen: Hvis vektene i den symmetriske modellen er valgt som betingelsene i betingelsene for binomial ekspansjonen, (1212) 2q. de vil summe til 1, og når q blir stor, vil omtrentlig normalfordelingen. Dette er en form for kjernevikting, med binomialet som kjernefunksjon. Den to-trinns konvolusjon som er beskrevet i det foregående avsnitt er nettopp dette arrangementet, med q 1, som gir vekter. Ved eksponensiell utjevning er det nødvendig å bruke et sett med vekter som summerer til 1 og som reduserer størrelsen geometrisk. Vektene som brukes er vanligvis av skjemaet: For å vise at disse vektene summerer til 1, vurder utvidelsen av 1 som en serie. Vi kan skrive og utvide uttrykket i parentes ved hjelp av binomialformelen (1- x) s. hvor x (1-) og p -1, som gir: Dette gir da en form for vektet glidende gjennomsnitt av skjemaet: Denne summeringen kan skrives som en tilbakevendingsrelasjon: som forenkler beregningen sterkt og unngår problemet at vektingsregimet bør strengt være uendelig for vektene til summen til 1 (for små verdier av alfa. dette er vanligvis ikke tilfelle). Notasjonen som brukes av ulike forfattere varierer. Noen bruker bokstaven S for å indikere at formelen er i hovedsak en glatt variabel, og skriv: mens kontrollteori litteraturen ofte bruker Z i stedet for S for eksponentielt vektede eller jevnte verdier (se for eksempel Lucas og Saccucci, 1990, LUC1 , og NIST-nettsiden for flere detaljer og arbeidede eksempler). Formlene som er nevnt ovenfor kommer fra Roberts arbeid (1959, ROB1), men Hunter (1986, HUN1) bruker et uttrykk for formen: som kan være mer hensiktsmessig for bruk i noen kontrollprosedyrer. Med alfa 1 er gjennomsnittlig estimering bare dens målte verdi (eller verdien av forrige datapost). Med 0,5 er estimatet det enkle glidende gjennomsnittet for nåværende og tidligere målinger. I prognosemodellene er verdien S t. brukes ofte som estimat eller prognoseverdi for neste tidsperiode, det vil si som estimatet for x på tidspunktet t 1. Dermed har vi: Dette viser at prognosen på tidspunktet t 1 er en kombinasjon av det forrige eksponentielt veide glidende gjennomsnittet pluss en komponent som representerer den veide prediksjonsfeilen, epsilon. på tidspunktet t. Forutsatt at en tidsserie er gitt og det kreves en prognose, er det nødvendig med en verdi for alfa. Dette kan estimeres fra eksisterende data ved å evaluere summen av kvadrert prediksjon feil oppnådd med varierende verdier av alfa for hver t 2,3. sette det første estimatet til å være den første observerte dataværdien, x 1. I kontrollapplikasjoner er verdien av alfa viktig, da den brukes til å bestemme de øvre og nedre kontrollgrensene, og påvirker den forventede gjennomsnittlige kjølelengde (ARL) før disse kontrollgrensene er brutt (under antagelsen om at tidsseriene representerer et sett av tilfeldige, identisk distribuerte uavhengige variabler med vanlig varians). Under disse forholdene er variansen av kontrollstatistikken: (Lucas og Saccucci, 1990): Kontrollgrenser settes vanligvis som faste multipler av denne asymptotiske variansen, f. eks. - 3 ganger standardavviket. Hvis f. eks. Alpha 0,25 og dataene som overvåkes antas å ha en Normal fordeling, N (0,1), når den er i kontroll, vil kontrollgrensene være - 1,134 og prosessen vil nå en eller annen grense i 500 trinn gjennomsnittlig. Lucas og Saccucci (1990 LUC1) utlede ARLene for et bredt spekter av alfaverdier og under ulike forutsetninger ved bruk av Markov Chain-prosedyrer. De tabulerer resultatene, inkludert å gi ARLer når gjennomsnittet av kontrollprosessen har blitt forskjøvet med noen flere av standardavviket. For eksempel, med en 0,5 skift med alfa 0,25 er ARL mindre enn 50 timers trinn. Tilnærmingene beskrevet ovenfor er kjent som enkelt eksponensiell utjevning. ettersom prosedyrene blir brukt en gang til tidsseriene, og deretter utføres analyser eller kontrollprosesser på det resulterende glatte datasettet. Hvis datasettet inneholder en trend og sesongkomponenter, kan to - eller tre-trinns eksponensiell utjevning brukes som et middel til å fjerne (eksplisitt modellering) disse effektene (se videre avsnittet om prognose nedenfor og NIST-arbeidet). CHA1 Chatfield C (1975) Analyse av Times Series: Teori og praksis. Chapman og Hall, London HUN1 Hunter J S (1986) Det eksponentielt vektede glidende gjennomsnittet. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Eksponentielt vektede Flytte Gjennomsnittlige kontrollsystemer: Egenskaper og forbedringer. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolldiagramtester basert på geometriske bevegelige gjennomsnitt. Technometrics, 1, 239-250
No comments:
Post a Comment